Formant analysis in dysphonic patients and automatic Arabic digit speech recognition
نویسندگان
چکیده
BACKGROUND AND OBJECTIVE There has been a growing interest in objective assessment of speech in dysphonic patients for the classification of the type and severity of voice pathologies using automatic speech recognition (ASR). The aim of this work was to study the accuracy of the conventional ASR system (with Mel frequency cepstral coefficients (MFCCs) based front end and hidden Markov model (HMM) based back end) in recognizing the speech characteristics of people with pathological voice. MATERIALS AND METHODS The speech samples of 62 dysphonic patients with six different types of voice disorders and 50 normal subjects were analyzed. The Arabic spoken digits were taken as an input. The distribution of the first four formants of the vowel /a/ was extracted to examine deviation of the formants from normal. RESULTS There was 100% recognition accuracy obtained for Arabic digits spoken by normal speakers. However, there was a significant loss of accuracy in the classifications while spoken by voice disordered subjects. Moreover, no significant improvement in ASR performance was achieved after assessing a subset of the individuals with disordered voices who underwent treatment. CONCLUSION The results of this study revealed that the current ASR technique is not a reliable tool in recognizing the speech of dysphonic patients.
منابع مشابه
Statistical Variation Analysis of Formant and Pitch Frequencies in Anger and Happiness Emotional Sentences in Farsi Language
Setup of an emotion recognition or emotional speech recognition system is directly related to how emotion changes the speech features. In this research, the influence of emotion on the anger and happiness was evaluated and the results were compared with the neutral speech. So the pitch frequency and the first three formant frequencies were used. The experimental results showed that there are lo...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملReconstruction of Dysphonic Speech by MELP
The chronical dysphony is the result of neural, structural or pathological effects on the vocal cords or larynx and it causes undesirable changes in the quality of speech. This paper presents a Mixed Excitation Linear Prediction (MELP) based system that reconstructs normally phonated speech from dysphonic speech, while preserving the individuality of the patient. The proposed system can be used...
متن کاملExploring the Effect of Differences in the Acoustic Correlates of Adults' and Children's Speech in the Context of Automatic Speech Recognition
This work explores the effect of mismatches between adults’ and children’s speech due to differences in various acoustic correlates on the automatic speech recognition performance under mismatched conditions. The different correlates studied in this work include the pitch, the speaking rate, the glottal parameters (open quotient, return quotient, and speech quotient), and the formant frequencie...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کامل